Enumerating symmetric directed convex polyominoes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bijection for Directed-Convex Polyominoes

In this paper we consider two classes of lattice paths on the plane which use north, east, south, and west unitary steps, beginning and ending at 0 0 . We enumerate them according to the number of steps by means of bijective arguments; in particular, we apply the cycle lemma. Then, using these results, we provide a bijective proof for the number of directed-convex polyominoes having a fixed num...

متن کامل

The number of directed k-convex polyominoes

In the plane Z× Z a cell is a unit square and a polyomino is a finite connected union of cells. Polyominoes are defined up to translations. Since they have been introduced by Golomb [20], polyominoes have become quite popular combinatorial objects and have shown relations with many mathematical problems, such as tilings [6], or games [19] among many others. Two of the most relevant combinatoria...

متن کامل

Combinatorics of diagonally convex directed polyominoes

A new bijection between the diagonally convex directed (dai-) polyominoes and ternary trees makes it possible to enumerate the dcd-polyominoes according to several parameters (sources, diagonals, horizontal and vertical edges, target cells). For a part of these results we also give another proof, which is based on Raney’s generalized lemma. Thanks to the fact that the diagonals of a dcd-polyomi...

متن کامل

Counting Directed-convex Polyominoes According to Their Perimeter

An approach is presented for the enumeration of directed-convex polyominos that are not parallelogram polyominoes and we establish that there are ( 2n n−2 ) with a perimeter of 2n + 4. Finally using known results we prove that there are ( 2n n ) directed-convex polyominos with a perimeter of 2n + 4.

متن کامل

Polyominoes with nearly convex columns: A semi-directed model

Column-convex polyominoes are by now a well-explored model. So far, however, no attention has been given to polyominoes whose columns can have either one or two connected components. This little known kind of polyominoes seems not to be manageable as a whole. To obtain solvable models, one needs to introduce some restrictions. This paper is focused on polyominoes with hexagonal cells. The restr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2004

ISSN: 0012-365X

DOI: 10.1016/j.disc.2003.10.014